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ELECTROKINETICS

I.— Development of Equations for Two-Phase

Flow Through Single Capillaries

Norman Street

ABSTRACT

This report is the second part of a study on the electro-

kinetics of the flow of oil and water through petroleum reservoirs.

The development of electric charges at the oil-water inter-

face is discussed and equations are presented for the streaming

potential, electro-osmotic pressure, and electroviscous effect dis-

played by a single capillary filled with anannulus of wetting phase
(water) and having a central core of immiscible nonwetting phase
(oil).

Although it is unlikely that oil and water would flow through

a porous medium following the theoretical pattern set forth here,

it seems certain that some fraction of the flow is of this type and

would modify considerably the measured electrokinetic effects.

INTRODUCTION

Although the effect of electrokinetics in retarding the flow of a single phase
through capillaries and porous plugs has been treated theoretically and observed

experimentally, no comparable work has yet been done on the simultaneous flow of

two immiscible fluids. There seems little doubt that during such flow both fluids,

under suitable conditions, undergo an electroviscous retardation; but it is also

possible that, under other conditions, one of the phases may be accelerated so

that the measured viscosity is less rather than greater than the bulk viscosity.

Such decreased viscosity actually has been observed by Templeton (1954) and

Templeton and Rushing (1956) during capillary flow of water and oil through micro-

scopic capillaries.

Before it is possible to derive an equation for the electroviscous effect re-

sulting from two-phase flow through a porous medium, it is necessary to develop a

model for that flow. Generally such a model is built up from some combination of

capillary tubes. Thus the simplest theoretical approach is to equate the porous

medium to a single capillary of suitable length and radius for the purpose of

describing its hydrodynamic behavior. The logical extension is to a combination

of tubes of varying radii, arranged in parallel and series. Such a series model

was used by Scott and Rose (1953) to modify the Yuster model and thus help explain

the nondependence of relative permeability on viscosity ratio.

[1]



2 ILLINOIS STATE GEOLOGICAL SURVEY

Network models (interconnecting networks of parallel and series elements)

have been analyzed by Fatt (1956) who found them useful in predicting flow behav-
ior; this work has been extended by Rose (1957). The use of network models for

analyzing electrokinetics in porous media has been treated by Overbeek and Wijga
(1946), Mazur and Overbeek (1951),and by Lorenz (1953a).

Wyllie and Gardner (1958) suggested that one might start with a bundle of

capillary tubes, cut them into thin sections, and rearrange these sections at ran-

dom laterally to produce a "pseudo-model. "

As pointed out by Tempi eton, the first concern is to gain knowledge of the

mechanism of the flow through individual capillaries.

Using a "bundle of capillary tubes" model, Brownell and Katz (1947) sug-
gested that both phases flow through all the tubes, whereas Wyllie and Gardner
suggested that each phase follows a separate path.

It is possible to combine these views (as I plan to do in another article)

and to divide the flow into three regions: a) tubes flowing both wetting and non-
wetting phase; b) tubes flowing only wetting phase; and c) the remainder of the

tubes, wetted by an immobile film of wetting fluid and flowing the nonwetting
phase.

The percentage of the total flow in each region can be determined by analy-
sis of relative permeability curves carried out when the electrokinetic effect is

negligible. From the contribution of each flow type to the total streaming potential,

or volume flowed during electro-osmosis, one can then calculate the total streaming

potential or electro-osmotic pressure to be expected, and thus also predict the

electroviscous retardation to flow.

CHARGED OIL-WATER INTERFACE

There is much experimental evidence that charged interfaces develop be-
tween oil and water, but the distribution of charges at this interface is open to

discussion. Thus Booth (1951), in deriving equations for the calculation of zeta

potentials from the electrophoretic mobility of oil droplets dispersed in an aqueous
medium, considers three possible distributions of charge: a) the charge is concen-
trated in a thin layer at the interface; b) the charge is distributed in uniform density

throughout the droplet; c) the charge is distributed in an electric double layer de-

veloped in the oil phase.
The equations developed for distribution c reduce to those for distribution b

when the double-layer thickness becomes greater than the radius of the droplet.

One may consider that distribution c is the intermediate one and that the double

layer can expand into uniform density, b,
or compress into a thin interfacial layer,

a. Thus if we picture the general charge

distribution at the oil-water interface to

be that of two diffuse double layers, we
can illustrate it schematically as in

figure 1

.

Here, since the double diffuse double

layer as a whole must be electrically

neutral
/°0 /° CO
f yOjMdx +

J
p2

(x)dx = (1)

"CO
^°

Aqueous phase

Oil phase

Fig. 1. - Schematic representation of the

distribution of space charges in the

oil and water phases
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which will also describe the charge condition in the event of reduction to either

a or b. p i, A, = charge density in phase 1 and phase 2, respectively.

The double-layer thickness in either phase is generally given by the

expression

where

X- /^Do
2

kT
2

(2)
2nz z e z

k = Boltzmann's constant

T = absolute temperature

n = number of dissociated molecules per m^
z = valency of ions

e = charge of an electron

D = relative dielectric constant

Do = absolute dielectric constant of a vacuum

However, for purposes of comparison between aqueous solutions and hydro-

carbons the expression given by Klinkenberg and van der Minne (1958) is much to

be preferred. This expression may be arrived at from (2) by a series of substitu-

tions, thus

kT

where

and

m 61777a

Am - coefficient of molecular diffusion

a = radius of an ion

77 = viscosity of medium

where

6TT77a

v = ionic velocity under the influence of an electric force,

F

F = zeE (E is electric field strength)

It is also true that the current, I, flowing under the influence of a potential

difference, E, in a liquid of conductivity, K, is

I = KE = 2nvze

Hence it follows that in (2) kT may be replaced by

* c j o ? ? „ Eze Eze 6-m?a v,cAm6tT77a and 2nz^e^ = K —— = K —y~ L =K6-n-r;a

and so

^ = DD Am
K

Klinkenberg and van der Minne point out that Am may be assumed to have
about the same value in hydrocarbon and water, because in the hydrocarbon the

somewhat larger size of the organic ions will be compensated for by the lower

viscosity of the medium.
Early experiments on the mobility of oil droplets dispersed in water were

reported by Ellis (1912), Mooney (1924), and Limberg (1926). Some authors have
reported their results in terms of mobilities (microns per second per volt per centi-
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Fig. 2. - The flow model showing the dis-

tribution of the phases and of their

associated double layers
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meter), and others as zeta potential

(millivolts). Although for large spherical

solid particles dispersed in water at 25°C
the zeta potential is numerically equal to

the mobility multiplied by 14.3, such a

simple relationship does not apply be-
tween the mobility and zeta potential of

oil droplets.

First there is the problem of the

charge distribution, which may be one of

the three possible distributions listed by

Booth, and, second, there is the fact that

the droplets are liquid,which causes them
to have a velocity different from that of

an equivalent solid particle. Booth suggests that the mobility of the equivalent

solid particle will be greater, but Jordan and Taylor (1952) suggest it will be less;

Jordan and Taylor's hypothesis is supported to some extent by experimental evi-

dence.
It would appear that the zeta potentials of paraffin oil droplets may approach

values of -86 mV in water and -151 in 0.0036M sodium oleate (Urbain and Jensen,

1936). Powney and Wood (1940) report mobilities of 4.35 u./sec/v/cm for Nujol

droplets decreasing to about 2 at 0.005N. The mobility was considerably increased

when the droplets were dispersed in sodium oleate and sodium dodecyl sulphate

solutions. Newton (1930) had reported velocities of 3.9 in water with a conduc-
tivity of 4xl0~6 ohm~l cm~l.

More recently Douglas (1950) found that dissolved sugar reduced the mobil-

ity of hydrocarbons in solutions of nonionic substances. He explained this as being

due to the preferential adsorption of the sugar, which reduced the ionic adsorption

and consequently the surface charge density.

Many workers have studied hydrocarbons other than paraffin. Taylor and
Wood (1957) found zeta potentials of -70 to -100 mV for decalin droplets in NaCl
solutions, and Carruthers (1938) attempted to correlate measured mobilities with

chemical composition using n-Octadecyl, n-Undecyl, n-Octyl, and A^'^n-Un-
decenyl alcohols and n-Octadecane and A-^ ^n-Octadecene an dispersed in solu-

tions 0.01N with respect to sodium ion. Douglas (1943) determined the mobility

of droplets of paraffin wax, dodecane, octadecane and A^-' ^octadecene, and of

mixtures of hexane-dodecane, cyclohexane-dodecane, benzene-dodecane and
decalin-dodecane, getting values of 1 - 1.5 u,/sec/v/cm in solutions kept 0.01N
in sodium ion at various pH's.

DEVELOPMENT OF EQUATIONS

This paper deals with the electrokinetics to be expected when two phases
are present in one capillary tube, and considers the flow through a single capillary

under the conditions suggested by Brownell and Katz (1947) and by Yuster (1951),

namely that the nonwetting phase (oil) should flow in a cylindrical portion of the

wetted (by water) capillary and concentric with it (fig. 2).

These authors assume that the velocities of the oil and aqueous phases are

equal at the interface during such flow, and Yuster gives the following expression

for the velocity distribution in the oil phase
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P
4L

(R2- r2)
t

(r
2_a 2)

(4)

where uQ
= velocity of laminar layer of radius a

R = radius of capillary

r = radius of oil phase

7] w = viscosity of water phase

7] Q
= viscosity of oil phase

P = pressure drop across capillary

L = length of capillary

The average velocity of the oil phase is

P
8'7 Lr2

2 (R2 r 2_ r 4)
7
7o + r4 (5)

/w— L / VV J

and the velocity (vw ) of any laminar layer (radius a) in the aqueous phase is

'»
= T^r 'R2 -a2 l <6 »

Streaming Potential

Assume that both the capillary and the oil surfaces are negatively charged
so that mobile positive counter ions are located in the aqueous phase. (The

analysis will remain valid, with due attention to signs of the zeta potentials, in

the event of other charge distributions.) As only one ionic solution is in contact

with both the capillary wall and the oil surface, it is apparent that the double
layers associated with both surfaces will be of the same thickness (X). Then
assuming, for simplicity in the derivation, that all the counter ions are located in

a Helmholtz double layer, it is possible to derive an expression for the streaming

potential caused by the movement of charges in the aqueous phase (Wood, 1946;

Butler, 1940; Perrin, 1904).

The streaming potential arises partly from the transport of the positive ions

of both the double layers in the aqueous solution, namely those associated with

the capillary wall charge and those associated with the oil surface, and partly from

transport of the negative charges associated with the oil itself. It is of course
essential that the thickness of the aqueous phase be such that the double layers

do not overlap and that the distribution of charges in the oil phase be known.
It is possible to suggest that the charges in the oil phase are located in a

Helmholtz double layer at a distance (X ) of approximately

X = DqK . x

from the oil-water interface (DQ and K are the dielectric constant and the conduc-
tivity of the oil, respectively).

However, the double-layer thickness in the hydrocarbon phase will be great,

and, as we consider only capillaries of small diameter, it is more likely that the

charge is homogeneously distributed throughout this phase as suggested by
Klinkenberg and van der Minne (1958).
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(1) Oil Phase

-/:

If electrokinetic measurements in the aqueous phase indicate a surface

charge density of
'CO

/^Mdx = -CT2

'o
on the oil phase, then the surface charge per unit length is -2-rrra2; an expression

that describes the charge per unit length of this phase whatever the charge dis-

tribution.

If the oil should move with an average velocity, v , the current of con-
vection is

I = -2Trrcr
2 v

and substituting the value of v from equation 5 gives

Io = " ?!l2l.T 9lo2r2_Wh3o^
4Vo

-[2(R^-r4)^ + r«] (7)
1 ' w

(2) Aqueous Phase

Assuming that the surface-charge density in the Helmholtz double layer

associated with the capillary interface is <r ^ and that associated with the oil-

water interface is a
2 , the current caused by the transport of these charges is

given by

Iw = 2-n-RaiVj + 2Trro"2V2

where v^ and v 2 are the velocities in the double layer associated with the cap-

illary surface and the oil surface, respectively — that is, v\ is the velocity of

radius R-X and V2 is the velocity of the annular layer of radius r+X . Thus

v
l
= 4^-lR2 -(R-A) 2

], v 2 - 7^-[R 2 -(r+X)2]
^7w HT]w

and

Iw = ^T" t(2RX)Rai + (R
2 -r 2 -2rX)rcr2 ] (8)

(3) Total Streaming Potential

Because the conductivity of the oil phase (10~ 10 to 10~ 12
) is much smaller

than that of the aqueous phase (10~3 to 10~6) the current of conduction will be

given by

I s = KTr(R 2 -r2)E

where
K = conductivity of the aqueous phase

E = streaming potential

The total current carried in the streaming liquids is I = Iw+I , and at

equilibrium I = I s , and so it follows when

R2 - i-2 r 2

Sw = 5— and so = 7T2' tnat
R z R



TWO-PHASE FLOW THROUGH SINGLE CAPILLARIES

PX f r ^wR i.
(9)

or putting

then

d£i d£
;

0"t = i—r , cr =
1 4ttX

' "2 4^

DP f, Rt7w i 1

ELECTRO-OSMOTIC PRESSURE

By considering the development of an electro-osmotic pressure in each phase
of this system we can consider conditions that exist when there is no movement at

the fluid-fluid boundary. Hence the problem in the aqueous phase is simply that of

the electro-osmotic pressure developed in an annulus, and the problem in the oil

phase is the electro-osmotic pressure produced in a capillary tube with a homo-
geneous charge distribution in the liquid.

(1) Aqueous Phase

Following the method of Porter (1920) we have: total charge in unit length

of annulus of radii R and r is

2ttR<t^ + 2tttct2

and hence with an applied potential difference of E the electric force causing move-
ment is

Fj = 2ir(Ro-1 + ro-2 )E

The frictional forces opposing flow are

F
2
= -2iTR7^wdv/da+ 2-TTrT^dv/da

The velocity within the double layer varies linearly with distance from

either wall and is zero at a=r and a=R, and so within the double layer extending
from R to R-X, dv/da = -v/X , whereas in the double layer extending from r to

r+X, dv/da = v/A . It follows that

F
2
= 2 TT(R+r) 7?wv/X

At equilibrium F^ = ?2' anc* so ^ f°H°ws tnat

_ (Rg-1 + ro-2)EX
V=

(
R+r^w

or

DE(R£ 1+ r^ 2 )

v = —
4Tr(R+r)77w
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or when V is the volume rate of flow

v = DE(R-r)(R£ 1+ r(;
2 )

4^w
(ID

In order to express this in terms of an electro-osmotic pressure, equation

11 should be equated with the equation for flow through an annulus (Lamb, 1932).

Thus

EB»zlMillM . «& (R
2 . r 2, (r2+ r

2 _^,
477w 8l7w ^n R/r

and so

Pw ~~

2DE(^ 1+ S 2^ 2 )

irR
2

( 1 +

S

2
) (1 +

S

-T-T^i
tnSo 2

(12)

(2) Oil Phase

Total charge per unit length is -l-nv^, and with an applied field strength

of E the electric force causing motion is

-2iTro"2E

The viscous force opposing motion is

2irr.Pr/277.77

and so

P = -2Ea2/r

or, expressing -03 in terms of the zeta

potential measured in the aqueous phase

Po = -dr (13)

The negative sign indicates that the

motion in the oil phase will be in a

direction opposite to that in the aqueous
phase with the assumed charge distri-

bution.

(3) Total Electro-Osmotic Pressure

The aqueous phase electro-osmotic

pressure (Pw ) as derived acts over an
area of ttR^Sw, and the oil phase pres-

sure (PQ ) as derived acts over an area

of ttR2So. The total electro-osmotic

pressure acting simultaneously over the

area ttR^ is therefore

P = PwSw + PqSq

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Water saturation

Fig. 3. -Water saturation against

Z = ( 1 + S
Q

2
) ( 1 + S

Q
-

In S
-2
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Substituting from the expressions (12) and (13) gives

2DE{Sw£l + SoMSw-H)£2}
P = ~

7
"

(14)

Sw
Z = (1 + S 2) (1 + S - . _i ) and is plotted in figure 3.

"nSo 2

ELECTROVISCOUS EFFECT

In considering the electroviscous effect that arises out of this streaming

potential and electro-osmosis, one must decide whether it is possible to test the

effect microscopically or macroscopically . For example, Lorenz (195 3b) in testing

the effect during the flow of acetone through quartz plugs shorted out the ends of

the plug and judged the existence of the effect from the differences in shorted and
unshorted flow. He therefore, at least implicitly, considered that the effect was
macroscopic in that he ignored the possibility that backflow might tend to occur

in the liquid during its transport between the electrodes, and assumed that a

potential difference must exist for the effect to be seen.

On the other hand, if certain viscosity increases in suspension flow in a

concentric cylinder rotational viscometer are ascribed to the effect of electro-

viscosity, one is implicitly supposing that the effect is microscopic and that it

affects the particle at the instant of its displacement because in this case there

is a closed circuit and no current flow.

The relevance of these concepts to the two-phase problem is that we could

consider that each phase is reacted on independently by the streaming potential or,

conversely, that both are reacted on together and to the same extent. In the first

case we can sometimes predict an increase and sometimes a decrease for each
phase, depending on such factors as saturation, viscosity ratio, and relative

values of the surface charges. In the second, the electroviscous effect would
always increase viscosity in the same ratio for each phase.

An expression for the electroviscous effect can be derived by considering

the volume of electro-osmotic backflow, resulting from the streaming potential,

that must be subtracted from flow caused by the pressure difference imposed on a

tube. Or one can consider that the electro-osmotic back pressure reduces the

pressure causing flow, a simpler idea to apply in the present case, although it is

not to be supposed that these back pressures have any physical significance.

An expression for the electroviscous effect may be simply derived (Street,

1959) by finding a value for the electro-osmotic back pressure (P-.) that arises from

the streaming potential and subtracting it from the applied pressure (P) to get the

pressure (P2) actually causing flow. Then

P
2

= P- Pl

If the liquid is flowing through a capillary tube of radius R and length L

with a velocity v, its apparent viscosity (-na ) has a value of

PttR 2

la 8Lv

while the true viscosity (77) has a value of

P
2
ttR2

77
8Lv
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That is

773/77 = P/P
2 (15)

For both the aqueous and oil phases, P 2
is given by rearrangement of

equation 10 as

D^- soU^so
i, Q

The streaming potential E gives rise to an electro-osmotic back pressure
(P^) that has the value of Pw by equation 12 for the aqueous phase and of PQ by
equation 13 for the oil phase.

Combining equation 15 with these values for the electro-osmotic pressure
gives

? I r

R7) w
1 i

law
n

D
(£i

+Vt 2)Ui-s [i + n^s ^ 2 }-1+ —
(16)

^w 2-n
lR l TjwKZ

=1- 5
'

(17)
V 8tt^RX77wKSw

where

77 aw , 77ao = apparent viscosity of water and oil phases, respectively,

If the less likely macroscopic approach is used, then

2DE{sw £l + Soi(Sw-|f)C2}

and so

1 "
.R 2Z

2D 2 [SwC 2 + S I(Sw -§|)^][^-So(l+^So*)^]

f = 1+ — ~
(18)

Tr
2R 2

Z77wKSw

DISCUSSION

I do not believe that two immiscible fluids will actually flow through a

porous medium according to this simple (and unstable) pattern. However, it seems
certain that some fraction of the flow through porous media is of this type, and that

even a small fraction of such flow would modify considerably the measured electro-

kinetic effects.

It is probably impossible to test the equations in capillary flow experiments
except at very low wetting-phase saturations, and then of course care must be taken
to make sure that the double layers developed in the aqueous phase do not overlap,

as has already been discussed (Street, 1959). The best test of the equations would
appear to lie in experiments conducted with porous media for which the fraction of

the various flow types has been determined.
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The equations for streaming potential, electro-osmotic pressure, and electro-

viscosity for porous media supposedly made up of bundles of capillary tubes of

equal and varying radii will be presented in a future publication.
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